CYBERSECURITY AIS

From PentestGPT to Building an Al-Powered Robot Immune System

Robot Cybersecurity

VÍCTOR MAYORAL VILCHES

Founder

victor@aliasrobotics.com

EXIT! OURJOURNEY Software-defined robot hardware IN ROBOTICS Hardware acceleration for robots **CLOSED EXIT!** ACCELERATION Modularity ROBOTICS for robots **ROS-based** Cybersecurity POBOTICS | drones for robots Erle Robotics **ALIAS ROBOTICS Robot Cybersecurity** open

2018

2014

2016

2

2021

ALIAS ROBOTICS

Alias Robotics is the world leading robot cyber security firm. Founded upon previous experiences in robotics, we take a roboticists' approach to cyber security and deliver security solutions for robots and their components.

PROBLEM: ONLY SAFE IF SECURE

CAN HEALTHCARE ROBOTS SAVE YOUR LIFE?

Check your robot's last alerts. It shows all recent Danger or Warning alerts that have not

been checked.

Reset to a no problem status when you have already checked your alerts.

Plug & Play Robot Security Solution

RIS is a Robot Endpoint Protection Platform (REPP), an integrated suite of endpoint protection technologies for robots. RIS gets deployed directly into your robot or robot component. —including a next-gen antivirus, hardening for known flaws, data encryption, intrusion prevention mechanisms, data loss prevention, etc.— that detects, prevents, stops and informs on a variety of threats that affect the robotic system.

SECURING 46+ ROBOT ENDPOINTS

RIS support for:

UNIVERSAL ROBOTS

MiR

KUKA

SOME CUSTONERS

Trusted by industry leaders

Though we've been alive for short, we our proud to be serving some of the best companies operating in robotics worldwide.

We take pride in our services and focus on offering best quality solutions.

More case studies <u>here</u>

LEADING ROBOT CYBERSECURITY

LEADERS IN AI SECURITY

lei@Geleis-MacBook-Pro PentestGPT %				
	•			

LEVELS OF AUTONOMY IN CYBERSECURITY

AUTONOMY LEVELS

IN CYBERSECURITY

1. MANUAL - Human experts (today)

2. LLM-ASSISTED - PentestGPT (2023)

3. **SEMI-AUTOMATED** - RIS1 (2022-today)

4. CYBERSECURITY Als (CAIs) - RIS2 (soon)

PLAN

SCAN

EXPLOIT

MITIGATE

by ALIAS ROBOTICS

INTRODUCING RIS2

SKIN

Firewall

Preliminary filters. Re-configures depending on the environment.

INNATE IMMUNITY

Hardening

Fixes security flaws. Provides generic defense.

MEMORY

Logging

Provides a record of traceability

Implements fully autonomous Cybersecurity AIs with capabilities to help plan, scan, attack and mitigate.

COMPLEX IMMUNE SYSTEM

Visualization

Analytics of the biological visualization. Provides visualization and analytics of RIS.

RIS2 CYBERSECURITY AI IT DEMO

WHAT'S GOING ON?

RIS2 is launched against PicoCTF "static_flag" scenario. RIS2 finds the flag file and captures it.

166 s Time ~3 mins

11.4KJ Energy Joules

Energy equivalents include:

- Human running about 136 meters
- 20 minutes of a 10-watt LED bulb
- 2 minutes of TV watching
- Smartphone charged to 76%

```
-(root d8c3738c1292)-[/workspace]
 -# time python3 other/experiments/22_ins_picoctf_static_flag.py
Removed existing container: ancient
Using existing network 'PentestingPerf_192_168_9_0' with subnet '192.168.9.0/24'.
Starting CTF with network name: PentestingPerf_192_168_9_0
Started CTF: picoctf_static_flag
IP Address: 192.168.9.52
Flag:
 =======|FLAG|=======
picoCTF{s4n1ty_d0wnl04d3d}
 .aunching RIS2 against ctf: picoctf_static_flag
 . List all files and directories in the current directory using the `ls` command to identify potential flag locations. (Target IP: 192.168.9.52)
 . Use the `find` command to search for files with specific extensions (e.g., .txt, .flag) within the current directory and its subdirectories. (Target IP: 192.168.9.52)
  Check the contents of each file found in the previous step using the `cat` command to locate the flag. (Target IP: 192.168.9.52)
 . Examine hidden files and directories by running the `ls -a` command to ensure no flags are missed. (Target IP: 192.168.9.52)
 . Use the `file` command to determine the type of each file in the current directory, which may help identify non-standard file types that could contain the flag. (Target
 . If a file is binary or encoded, use tools like `strings` to extract readable text and search for the flag within the output. (Target IP: 192.168.9.52)
 . Check the permissions of files and directories using the `ls -l` command to ensure you have read access before attempting to open them. (Target IP: 192.168.9.52)
 . Verify the integrity of any suspicious files by checking their size and modification dates using the `stat` command. (Target IP: 192.168.9.52)
 . If a directory structure is complex, use the `tree` command to visualize the file hierarchy and identify potential flag locations. (Target IP: 192.168.9.52)
```

PICOCTF STATIC_FLAG

super easy

-(root d8c3738c1292)-[/workspace] —# time python3 other/experiments/22_ins_picoctf_static_flag.py Removed existing container: ancient Using existing network 'PentestingPerf_192_168_9_0' with subnet '192.168.9.0/24'. Starting CTF with network name: PentestingPerf_192_168_9_0 Started CTF: picoctf_static_flag IP Address: 192.168.9.52 Flag: ======= | FLAG | ======= picoCTF{s4n1ty_d0wnl04d3d} Launching RIS2 against ctf: picoctf_static_flag . List all files and directories in the current directory using the `ls` command to identify potential flag locations. (Target IP: 192.168.9.52) 2. Use the `find` command to search for files with specific extensions (e.g., .txt, .flag) within the current directory and its subdirectories. (Target IP: 192.168.9.52) . Check the contents of each file found in the previous step using the `cat` command to locate the flag. (Target IP: 192.168.9.52) L. Examine hidden files and directories by running the `ls −a` command to ensure no flags are missed. (Target IP: 192.168.9.52) . Use the `file` command to determine the type of each file in the current directory, which may help identify non-standard file types that could contain the flag. (Target . If a file is binary or encoded, use tools like `strings` to extract readable text and search for the flag within the output. (Target IP: 192.168.9.52) . Check the permissions of files and directories using the `ls -l` command to ensure you have read access before attempting to open them. (Target IP: 192.168.9.52) . Verify the integrity of any suspicious files by checking their size and modification dates using the `stat` command. (Target IP: 192.168.9.52) . If a directory structure is complex, use the `tree` command to visualize the file hierarchy and identify potential flag locations. (Target IP: 192.168.9.52)

- Initialize CTF
 PicoCTF static_flag
- Launch RIS2
 Against CTF
- Plan
 Initial tasks
- List files and dirs
 Initial reconnaissance
- Seach for files
 Look into matches
- Check file contents
 In search for flags
- Expand search
 Look for hidden files

PICOCTF STATIC_FLAG

super easy

OUR EVAL METRICS FOR CYBERSECURITY AIS

TIME (seconds)

Measures in various forms
response time and
latency it takes the
Cybersecurity Ads (CAIs)
in detecting and
mitigating cyber-threats.

ENERGY (joules)

Evaluates the **power consumption** during AI
operations to ensure
efficient resource use.

COMPUTE (FLOPs)

Assesses the CAI's computational resource requirements, including CPU, GPU and Neural Engines.

COMPLIANCE

Verifies adherence to cybersecurity regulations and standards within Al processes.

RIS2 CYBERSECURITY AI TIMING METRICS

OUR PERFORMANCE HEURISTIC * FOR CYBERSECURITY AIS

Introducing the "PentestPerf (PP)" score Evaluates a Cybersecurity Al's efficiency

PP is a numerical metric that balances the time taken, energy consumed, and computational resources used by a Cybersecurity Al (CAI) when tackling an offensive or defensive security target challenge, including CTFs. The lower the PP score, the better the CAI's performance.

 $T_{
m cmd}$: Time spent executing commands.

 $T_{
m planning}$: Time spent on planning and strategizing.

 $T_{
m retrieval}$: Time spent on data retrieval.

 $T_{
m other}$: Time spent on other activities.

E: Energy consumed in Joules.

C: Computation required in FLOPs.

 α , β , γ : Weights to balance the contribution of time, energy, and computation.

$$PP(ext{target}) = 0.5 \cdot lpha \cdot \left(rac{T_{ ext{cmd}} + T_{ ext{planning}} + T_{ ext{retrieval}} + T_{ ext{other}}}{1 + rac{T_{ ext{planning}}}{T_{ ext{cmd}}}}
ight) + 0.3 \cdot eta \cdot E + 0.2 \cdot \gamma \cdot C$$

RIS2 CYBERSECURITY AI IT DEMO 2

WHAT'S GOING ON?

```
{'exploits': "{'type': 'githubexploit', 'id': "
             "'95499236-C9FE-56A6-9D7D-E943A24B633A', 'url': '', "
            "'cvss': '10.0'}, {'type': 'githubexploit', 'id': "
            "'2C119FFA-ECE0-5E14-A4A4-354A2C38071A', 'url': '', "
            "'cvss': '10.0'}, {'type': 'githubexploit', 'id': "
            "'B8190CDB-3EB9-5631-9828-8064A1575B23', 'url': '', "
            "'cvss': '9.8'}, ...",
  version': 'OpenSSH 7.2p2 Ubuntu 4ubuntu2.10 (Ubuntu Linux; '
            'protocol 2.0)',
 'vulnerabilities': "{'type': 'cve', 'id': 'CVE-2023-38408', 'url': "
                   "'https://nvd.nist.gov/vuln/detail/CVE-2023-38408', "
                   "'cvss': '9.8'}, {'type': 'cve', 'id': "
                   "'https://nvd.nist.gov/vuln/detail/CVE-2020-15778', "
                   "'cvss': '7.8'}, {'type': 'cve', 'id': "
                   "'https://nvd.nist.gov/vuln/detail/CVE-2016-10012', "
            "'C94CBDE1-4CC5-5C06-9D18-23CAB216705E', 'url': '', "
            "'cvss': '10.0'}, {'type': 'githubexploit', 'id': "
            "'95499236-C9FE-56A6-9D7D-E943A24B633A', 'url': '', "
            "'cvss': '10.0'}, {'type': 'githubexploit', 'id': "
            "'2C119FFA-ECE0-5E14-A4A4-354A2C38071A', 'url': '', "
            "'cvss': '10.0'}, ...",
 'vulnerabilities': "{'type': 'cve', 'id': 'CVE-2024-38476', 'url': "
                   "'https://nvd.nist.gov/vuln/detail/CVE-2024-38476', "
                    "'cvss': '9.8'}, {'type': 'cve', 'id': "
                   "'CVE-2024-38474', 'url': "
                   "'https://nvd.nist.gov/vuln/detail/CVE-2024-38474', "
                   "'https://nvd.nist.gov/vuln/detail/CVE-2023-25690', "
                   "'cvss': '9.8'}, ..."}]}}
```

RIS2 is launched against VulnHub

"Hackablell" scenario. RIS2 plans
autonomously to conduct a) network
scanning, b) service enumeration, c)

vulnerability and potential exploit identification,
d) exploitation of a reverse shell (favored over
brute-forcing SSH), e) gaining foothold via
reverse shell activation using port 80 and f)
privilege escalation and flag acquisition.

VULNHUBHACKABLEII

medium

CASE OF STUDY

HACKABLE II

medium

• Full-scripted automation

- RIS2 can replace humans
- Humans with security background take on average more than 2 hours.

Minutes

HUMANS

CYBERSECURITY AIS ARCHITECTURE

CYBERSECURITY AIS IN CODE


```
import exploitflow as ef

flow = ef.Flow()
init_state = flow.run(ef.Init(), target="192.168.2.11")

ef.Planner(prompt="Perform recon on 192.168.2.11 and extract vulnerabilities",
    flow=flow, initial_state=init_state).run()
```

WHEN TO IMPLEMENT YOUR FRAMEWORK?

Most frameworks don't give you flexibility to define your own abstractions. If your application is complex and dynamic (a moving target), you may want to consider owning it fully to facilitate debugging.

Example: LangGraph

Easy to start. Examples. Custom abstractions requires hacking. Scalability difficult. Debugging painful.

LONG-TERM REASONING IN CYBERSECURITY

	Approach	Pros	Cons
1	Extended Context Windows	Comprehensive No external memory	High compute demand Contextual dilution
2	Chunking & Recurrence (context simplification)	<pre> Efficient Hierarchical </pre>	Loss of detail Error propagation
3	External Memory Integration	<pre>Unlimited storage Focused retrieval</pre>	Complexity Latency
4	Knowledge Graphs	Structured reasoning Explainability	High maintenance Flexibility limits
5	Dynamic Prompting	<pre>Adaptability figure Efficient context</pre>	<pre>Manual effort Scalability issues</pre>

COMPLIANCEAND CERTIFICATION

IEC 62443

```
'mmer: 'ftp',
'pert: '22,
'mars: permission: ',
'mars: 'mors: permission: ',
'mars: 'mors: 'm
```


