R

1|

Hacking and Defend

[/

|

TABLE OF CONTENTS

Intro

Quick background
and such

Attacking APIs

How to attack and what
those attacks look like

Why Attacking APls?

What makes APIs
interesting to attackers

Conclusion

Key takeaways and
your questions

R IS

Who is this guy?

Reformed programmer & AppSec Engineer _if

Noname Security -
Distinguished Engineer, Noname Labs
15 years in the OWASP community
o OWASP DefectDojo (core maintainer)
o OWASP AppSec Pipeline (co-leader)
o OWASP WTE (leader)
22+ years using FLOSS and Linux
Currently a Go language fanboy
Ee Danin Tang Soo Do Mi Guk Kwan
(2nd degree black belt)
Founder 10Security

C\-
i
o
=T
—
ol)
(9=
e
)
(qe
—
=

APls are Simple

Wikipedia:

An application programming interface (API) is a connection between
computers or between computer programs.

GetSomething

Your Program My Program

(in language X) (in language Y)
Something

APls aren't Simple

App

/s |

API —,[

Web App Gateway

API Endpoints

-

i — @ —([)=——1

(i) 1 —

Management
(control plane)

!
API g

3
I3
3

3

E

Mobile
Service

Suggestion
Service

Catalog
Service

Loyalty
Services

Cart
Services

Check
Out Service

Shipping Services

(D= [[B<— 8

AN

Payment Services

R

Inventory Services

< (< B~

On-Premises Data
Center or Private Cloud

Even if you have a solid AppSec program

App Sec Tooling API Sec Tooling

Rate Limiting OAuth2
WAF

App
Inventory ST JWTs AP| Gateway

DAST Service to Service Auth-n

Threat Modeling OpenlD Connect

Developer Training Anomaly Detection
API Specs

spLc SCA API Inventory

Anti-Bot Protection

APl Management

“h‘r‘;“’“""”;“"i"w‘m‘c;w‘
TCEEECECEEE T

///
[/

f///; /n /r f/l /l (l

“Data is the new oil”

Clive Humby
British Mathematician

“APls are data pipelines”

\ Matt Tesauro
\ Your presenter

um‘

\\\\‘
\

Blackbox

Simulate an attacker
with zero knowledge

Greybox

Like blackbox but with
limited info on the target

Types of AP attaeks Testing

Whitebox

Test with full knowledge,
some controls turned off

%

\ Crystalbox
! ‘ Full knowledge including

source code, only the
APIs controls in place

Pro Bono
Pen Testing
(attacks)

Defining the 3 Pillars of APl Security

1. API Security Posture
a. Full inventory of all APIs

b. Whois calling the API? What data is sent/received? Where did the call originate?

2. API Runtime Security
a. Watching API traffic and understanding what is normal

b. Anomaly detection and alerting

3. API Security Testing
a. Assess the security state of APIs

b. DAST, not SAST ideally tested early and often
c. Feedresults into the issue trackers used by dev teams

/y!!\v\‘ it

((f(l((m(\u\\\\\

\\\\\\

///

(\\(

A better (security) definition of an AP

An API consists of 3 parts:

(1) Hostname
e.g. example.com, uat.bigcorp.com

) Path
e.g. /api/v2/users/all , /v1/cart/addltem
3) Method

e.g. POST, PUT, GET, PATCH ADENETE=n

GET to example.com/v2/users/all!= DELETE to example.com/v2/users/all

POST to uat.example.com/v2/user/admin!= POST to example.com/v2/user/admin

)
o
<T
on
.m
—
olin)
(9=
e
e
==

Recon
Finding APIs to attack

Passive Recon

I

=

Gather all the public information you can on potential targets

Attacker

o No interaction with the target
o OSINT / Public information sources
o Google Dorks

o intitle: inurl: ext: site: filetype:
o DNS/OWASP Amass

o Shodan
o Search engine of connected
devices

o Search for APIs
o www.programmableweb.com
o apis.guru

o Github issues/PRs (if FLOSS)
o Stack Overflow posts

Defender

@) @) el @ el Ne)

Not much to do here - it's public info
You may want to advertise your API
“Getting started” pages
curl examples, Postman collections
APl docs behind a customer login
Support docs can help attackers too

o Username format

o Password complexity

o Auth method (bearer token, ...)
Posture & Runtime & Testing aren't in
play since no traffic hits your infra

Active Recon

Gather all the public information you can from a targets (play nice)

Attacker

Interaction with the target is desired
Initially traffic looks harmless or clumsy
Start with basic nmap scans of target(s)
o Listening ports esp http/https
Other clues to APIs
o robots.txt - disallowed URLs
o DevTools - network tab / XHR /
Memory / Performance
Local proxy (Burp/Zap) for API backed
websites / mobile apps
Bruteforce URLs (dirbuster, dirb,
Gobuster)
Kiterunner - API focused bruteforce

Defender

Pretty hard to filter from Internet
background radiation (noise)

For SPAs, DevTools are just a fact of life
Review items pointing to your API like
robots.txt

Nmap scans are detectable but VERY
common

Bruteforce activity stands out if real time
monitoring is sufficient

Kiterunner should trip APl monitoring if
in place

Posture - focus efforts

Runtime - discover active recon
Testing - proactive, not much for Recon

Discovery

Understanding your
APl target

Discovery

You have target(s), now how to use them legitimately

Attacker

(@)

Learn how to make legitimate requests

o Especially how to authenticate
Look for

o APl documentation

o “Getting Started” guides

o What the APl does / why created
Spec files (Swagger, OpenAPI, RAML,
Postman collections, WADL, WSDL, ...)
Clients (upstream proxy them)
Manually creating a list / Postman
collection based on:

o Bruteforced URLs

o SPA proxied traffic

o Kiterunner

Defender

Traffic mostly looks like someone learning
your API
For SPAs & Mobile
o Discovery may stand out
o Your clients already know how to
make API calls

For undocumented APIs, there should be
many failed requests
Posture - focus efforts, define
internal-only APIs
Runtime - detect Discovery in
certain circumstances
Testing - proactive, not much for Discovery

J]y'”r"c’//«"//”
T
NI
“WM
(|

i

Discovery
Seems easy
but can be a

time sink

Active Attacks

Getting malicious
eIl AP sl

HRRE
|

AP

Broken Object Level
Authorization (BOLA)

AP

Mass Assignment

AP

Broken User Authentication

AP

Security Misconfiguration

AP

Excessive Data Exposure

AP

Injection

AP

Lack of Resource &
Rate Limiting

AP

Improper Assets Management

AP

Broken Function Level
Authorization

AP

Insufficient Logging &
Monitoring

roken Object Level Auth

user-agent: python-requests/2.22.0

x-forwarded for: 5.29.14.174

X
authorization mauF,Jhocnoulummlsmn&cumvawa eyJzdWIOLIC. ent-length: 231
k2

* authorization-nns

* header -4, 11 Jun 2021 20:30:01 GMT
alg: HS256

wntent-type: application/json
typ: JWT

* payload

© B Vo
sub: Benjamin_Olivia25163 } A] 3 : .. Usermnany, Benjamin_Olivia25163
° ST R AR

dob: 1984-12-29 email: Benjamin_Olvia25163@ga.com
emall: Benjamin_Olivia25163@ga.com full_name mmm
phone_number: 15603153235
date_of_birth: 1984-12-29
full_name: Benjamin William
phone_number: 15603153235
ssn: 939-31-1688
° al
user|id: 20d97041-5044-498-8b3d-62432550811d @ > 550, 939-31-1688
J

exp: 1623529800

usc® jd. 20d97041-5e44-49¢8-8b3d-6a432550811d
body: Empty

Request , Response

roken Object Level Authorization (BOLA) "

user-agent: python-requests/2.22 0

x-forwarded-for: 5.29.14.174

authorization Beaﬂ{ eyJhbGCiOUIUZIT NilsinRScCI6IkpXVCJ9, ey Jzd
&

* authorization-nns

~ header

alg: HS256

typ: JWT

~ payload
®

——) cm—
sub: Benjamin_Olivia25163 &
o —)

dob: 1984-12-29

email: Benjamin_Olivia25163@ga.com
phone_number: 15603153235
full_name: Benjamin William

ssn: 939-31-1688

. \
|,\--r{ Id: 20d97041-5e44-49¢8-803d-62432550811d @ ...

oxp: 1623529800

body: Empty

keep-alive

th: 240

¢/1.19.10

Jun 2021 20:30:12 GMT

: application/json

‘harlovie_Amelia13604

<arlotte_Amelial3604@ga.com
full_name: Charlotte AbigailOlivia
date_of_birth: 1996-09-04
phone_number: 12505679386

ssn: 711-95-1969

ust’r-d 01bd4b99-ea91-4025-9dc4-a93a941a1bdc |

Response

One user can access another user’s data or take actions for them

Attacker

(@)

Look at how API resources are
structured

o Change IDs within API calls

o Can be names (non-numeric)
Make calls to other IDs/resources with
your Auth-N method / token
Create something as user 1

o Tryto access it as user 2
Response differences

o HTTP Response code (404 vs 405)

o Time to respond

o Length of response (rare)

Defender

Detection requires fairly deep inspection
of the API calls

o WAFs will generally fail

o Shaped like legit request with IDs

swapped

Looking for BOLA can cause increased
Auth-Z errors
2 similar requests from the same client
with different IDs can be found by ML
Posture - focus on most risky APIs
Runtime - detect BOLA attacks
Testing - Find BOLA early / pre-prod

Broken User Authentication

Using poor practices in authentication to attack APIs

Attacker

o O

O O O O

Bruteforce credentials

No anti-automation on password resets
or MFA/CAPTCHA

Password Spraying

Base-64 “protections”

Low entropy tokens

JWT weaknesses

Captured JWTs

None algorithm, no signature
Key mismatch, blank password, ...
Cracking JWT secrets

jwt_tool

(@ o) (@) (o) e)

Defender

Bruteforce attacks are noisy

Password spraying is very noisy

Ensure crypto is used correctly and

carefully

JWT Best Practices RFC

Consider removing Auth-N from the API
o Only get tokens through web app

Posture - identify Auth-N APIs
Runtime -detect brute force, spraying,
JWT manipulation
Testing - identify poor practices early

Excessive Data Exposure

Sometimes developer productivity helps attackers too!

Attacker

(@)

Look for APl responses that provide
‘extra’ information

o Mobile app APIs tend to trust

client to filter data

Look for ‘interesting’ responses

o Profile pages

o Linked users

o Internal meta-data
Is the data expected part of a larger data
object or DB row?
Can be time consuming to check all
possible responses for excessive data

Defender

(@)

Single requests can't be distinguished

from normal traffic

SAST can help here to avoid “to_json” or

similar

Don't rely on clients filtering data

Separate data objects for app and API

Posture - Shows sensitive data, large
responses

Runtime - Detect multi-request data

scraping
Testing - Find verbose responses early

Failure to provide limits is a recipe for DOS or worse

Attacker

o Add thousands of items, ask for a list
o Lack of pagination
o Denial of APl use (client)
o Fuzzing and bruteforce attacks can
discover these
o Modify requests, different client,
different IP to bypass limits
o CPU/ Memory intensive requests
o robots.txt or documentation
o Other games to play
o Switch cAsE
o Null and other terminators
o Encoding data
o Too high to make a difference

Defender

Some requests will look normal but with
large responses
Unusual requests

o Headers, encoding, terminators, ...

Observability can show usage spikes

Many bypass methods stand out from

normal traffic

Posture - Determine APIs needing limits

Runtime - Detect anomalous traffic and

respond

Testing - Fuzzing request data can find

some issues early

Failure to restrict access by group or role leading to compromise

Attacker

(@)

Focus on APIs with multiple roles/groups

o Potential for expose backplane
o Most things have an ‘admin’
Try undocumented HTTP methods
o PATCH, PUT, POST, DELETE(!)
Create items with one group/role
o Interact with those items as a
different role
Bruteforce / guess potential backplane
operations
Experiment with headers, request data
to access admin functions

Defender

Affects APIs with 2+ roles, groups,

privilege levels

Calls to unsupported methods that fail

Same client, different roles within a

short period of time

Failures for backplane/admin paths

Unusual requests - headers, body

Posture - Determine APIs with groups,
roles, privilege levels

Runtime - Detect unusual, failing
requests or changes in role
from a client

Testing - Conduct Auth-Z testing early

Mass Assignment

Why not accept more data, what could go wrong?

Attacker

(@)

Look for requests that appear to be
partial data
o Make guesses at unsent items
Look at request/response difference
between roles/groups/privilege levels
Guess / bruteforce multiple values at
once (hail mary)
Error messages or required field
messages can provide clues
Fuzzing can also find issues
Combine with Broken Function Level
Auth-Z to change data for other users
o Change email/contact details

Defender

Requests stand out from normal

requests with deep inspection

Large number of failed/invalid requests

Increased request size

Increased severity for APIs with different

roles/groups/privileges

Posture - Focus on APIs with multi-roles
or sensitive data

Runtime - Requests with extra data,
multiple failed/invalid requests

Testing - Add additional, valid fields to
discover early

Security Misconfiguration

A little misconfiguration can go a long way

Attacker

(@)

Check the basics

o TLS config

o Info leaks via headers, etc

o Default credentials, EICAR

o Use Recon and Discovery
Verbose errors

o Purposefully make bad requests
Misconfigured framework settings

o Debug mode
Intermediate devices

o Determine if WAF, APl Gateway,

etcisinline

Call‘internal’ functions with origin
headers e.g. X-Remote-Addr

Defender

Basic network vuln scanners can find the
basics
Passive traffic monitoring can show
header issues, API gateway bypass,
many others
Client with many erroring or malformed
requests
Posture - Show weak configuration e.g.
API| gateway bypass
Runtime - Unexpected client traffic,
multiple errors, malformed
or anomalous requests
Testing - Good for the basics, better if
fuzzing is included in tests

Injection

Treat data like code and bad things happen

Attacker

(@)

Place injection strings into

o Tokens / APl keys

o Headers (esp API specific ones)

o Querydata

o Datain request body
Recon/Discovery can help focus what
types of injection to try

o Error messages can also help
Many good online resources for
injections

o Fuzzing lists

o OWASP Testing Guide
2nd order injections

Defender

Input validation AND output encoding
Many failed or malformed requests
Large number of errors or validation
failures at API
Overly trusting of East/West API calls
Posture - Focus on APIs with sensitive
data, East/West APIs
Runtime - Surge in errors, failed, invalid
or malformed requests,
control characters in requests
Testing - Attempt injections early in dev
cycle

Improper Assets Management

Know what you have if you want to protect it adequately

Attacker

o O O O

O

You find many misconfiguration issues
Internal APIs are publicly accessible
API documentation is inaccurate
“Hidden”/undocumented APIs

o Dev/New APIs in production
Legacy APIs are not decommissioned
APl v minus 1 or more available

Basically,
your pen test was productive and easy

(@)

Defender

Need to know all APIs (host, path,

method)

Classify all data received and sent by

APIs

API| Gateway enforced, East/West traffic

Public vs internal APIs

Posture - Solved with solid posture

management

Runtime - Updates posture as
environment changes

Testing - Not particularly useful here

Change guesses to decisions with data

Attacker

(@)

Fuzzing does not cause a reaction /

blocking
o Assumes control is in scope for
testing

Attacks, especially blatant injections go
unnoticed
o Phone numbers never look like:
<script>alert(XSS)</script>
Mostly, external testers / attackers can
only infer the level of logging and
monitoring

Defender

No attacks are seen / noticed
Diagnosing APl issues is difficult
Unplanned downtime or resource
consumption
Posture - Determine the appropriate
level of logging per API
Runtime - Monitoring is what this
provides, also can retain traffic
for analysis aka quasi-logging
Testing - Validate logging is working
(at best)

Bonus Material

Things that didn't fit
nicely into the
OWASP API Top 10

Attacker

o Send requests altering

o

(0]

(©]
O

Fuzzing

When crafted attacks don't work, throw the kitchen sink at your target

Values to the extreme
(large/small)

Negative numbers

Decimals for integers

Letters for numbers and vice
versa

Control characters

Unicode / non-native characters

o Target fuzzing strings if possible
o Look for changes in

@) (8) (@) (@

Response code
Response size
Timing

Error messages

Defender

o LOTS OF REQUESTS FROM A SINGLE
CLIENT OVER A SHORT PERIOD OF
TIME

o Fuzzing is very noisy on the network

o Spikes in CPU, RAM, request traffic,
errors, validation failures

o Posture - Not much for Fuzzing
Runtime - Easily detect fuzzing traffic
Testing - Fuzzing as a normal part of
testing to find issues early (pre-prod)

Structural vs Data Attacks

2 fundamental ways to be naughty with APIs

Structural Attacks

(@)

Modifying the structure of a request
o Repeating data structures
o Adding non-printing characters
e.g. spaces, tabs, null characters
between data elements
o Removing portions of the data
structure
Messing with the structure of the
request only - data provided is legit
QA / HTTP testing tools generally
normalize the structure so won't work
Custom craft HTTP requests (Python
requests library) or use a local proxy like
Zap or Burpsuite

Data Attacks

O

Modifying the data in a request
o Substituting fuzzing / injection data
for legit data values
o Providing unexpected or overly large
/ small data values
Structure of the request is not modified
What most fuzzing and injections attacks
look like - changing data without changing
the structure

QA / HTTP testing tools can be leveraged to
automate these attacks

Special Notes on GraphQL

GraphQL is a special beast but many things are the same

Same from GraphQL
o Recon (Passive / Active)
o Discovery
o Bruteforcing API paths
o Using a local proxy e.g. Burpsuite /

Zap
o Install GraghQL plugins
Documentation / “Getting Started”

Different for GraphQL

(@)

Introspection to learn the APIs schema
o Often disabled at the API

GraphQL is a query language
o Clients define the data they want
o Opposite of defined requests &
responses of REST APIs

Gaining popularity as clients aren't
bound to fixed data structures
o Client can change without need for

APl changes

https://github.com/dolevf/Damn-Vulnerable-GraphQL-Application

2&:\‘!\‘. J.?'a. (ool

—
Q
N
—
(e
—
o
(alin)

//‘//,/‘///‘//‘r" /’c""‘
/’//’ [/
]

Il

Key Takeaways for API testers

(1) Knowledge of how to test web apps prepares you for most of API testing
If you need some help, look at the OWASP Testing Guide

2) Some special knowledge and tools are needed for parts of API testing
More on this later

(3) Gaps in AppSec controls coverage and framework shortfalls lead to security
shortfalls

API testing is likely to be “productive”

Key Takeaways for API testers

https://owasp.org/www-community/api_security_tools

@ ownsk, W store

API Security Tools

Author: Matt Tesauro
Contributor(s): kingthorin

APIs are becoming an increasingly large portion of the software that powers the Internet including
mobile applications, single-page applications (SPAs) and cloud infrastructure. While APIs share
much of the same security controls and software security issues with traditional web applications,
they are different enough to make a distinction between ‘normal’ AppSec tools and ones that were
built with APIs in mind. This page was created to list tools known to support APIs natively and by
design.

Types of API Tools

Tools for APl Security can be broken down into 3 broad categories.

« API Security Posture: Creates an inventory of APIs, the methods exposed and classifies the
data used by each method.
Goal: Provide visibility into the security state of a collection of APlIs.
« APl Runtime Security: provides protection to APIs during their normal running and handling
of API requests.
Goal: Detect and prevent malicious requests to an API.
« API Security Testing: Dynamic assessment of an API's security state.
Goal: Evaluate the security of a running API by interacting with the APl dynamically
(DAST-like behavior)

For more detailed information on the 3 categories, see slides 14 to 17 of this presentation.

The goal is to provide as comprehensive a list of API tools as possible using the input of the
diverse perspectives of the OWASP community.

API Tools List

@ Watch 121 oy Star 680

The OWASP® Foundation works to
improve the security of software
through its community-led open
source software projects, hundreds of
chapters worldwide, tens of
thousands of members, and by
hosting local and global conferences.

Upcoming OWASP Global
Events

June 6-10, 2022 Irish Standard Time
(IST)

August 29 - September 1, 2022
Singapore Time (SGT)

September 22-23, 2022 Eastern
Daylight Time (EDT)

”/W””N///////’/y/‘/‘/r"/f““

(H(i

\\\\\\\
\\\\

Key Takeaways for APl defenders

The existing AppSec program and controls have API Security gaps to fill

Risk Posture Runtime Testing

Broken Object Level Authorization L & &
WEEELS

Broken User Authentication L " & &
wea

Excessive Data Exposure & & &

Lack of Resource & Rate Limiting & & &

Broken Function Level Authorization L
weak

i /,E,E/“
.

Key Takeaways for APl defenders

N
NN

The existing AppSec program and controls have API Security gaps to fill

Risk Posture Runtime
Mass Assignment &
Security Misconfiguration & &
Injection

: L weak &

*

Improper Assets Management & &
Insufficient Logging & Monitoring & “

“!““",,\/r!yfw“""‘“‘”““‘
(O]
(O

”////NHHHHH‘H
|

((H(((((\(((!((Huu\u

)

\\\

\‘1

Sorry about the firehose

A -

Audience

THANKS!

Do you have any questions?
matt.tesauro@owasp.org

Deck will be posted at:
https://www.slideshare.net/mtesauro

{Fo’@;ﬂ>

